Unfair Noisy Channels and Oblivious Transfer
نویسندگان
چکیده
In a paper from EuroCrypt’99, Damg̊ard, Kilian and Salvail show various positive and negative results on constructing Bit Commitment (BC) and Oblivious Transfer (OT) from Unfair Noisy Channels (UNC), i.e., binary symmetric channels where the error rate is only known to be in a certain interval [γ..δ] and can be chosen adversarily. They also introduce a related primitive called PassiveUNC. We prove in this paper that any OT protocol that can be constructed based on a PassiveUNC and is secure against a passive adversary can be transformed using a generic “compiler” into an OT protocol based on a UNC which is secure against an active adversary. Apart from making positive results easier to prove in general, this also allows correcting a problem in the EuroCrypt’99 paper: There, a positive result was claimed on constructing from UNC an OT that is secure against active cheating. We point out that the proof sketch given for this was incomplete, and we show that a correct proof of a much stronger result follows from our general compilation result and a new technique for transforming between weaker versions of OT with different parameters.
منابع مشابه
Oblivious Transfer from Weak Noisy Channels
Various results show that oblivious transfer can be implemented using the assumption of noisy channels. Unfortunately, this assumption is not as weak as one might think, because in a cryptographic setting, these noisy channels must satisfy very strong security requirements. Unfair noisy channels, introduced by Damg̊ard, Kilian and Salvail [Eurocrypt ’99], reduce these limitations: They give the ...
متن کاملOn the (Im)possibility of Basing Oblivious Transfer and Bit Commitment on Weakened Security Assumptions
We consider the problem of basing Oblivious Transfer (OT) and Bit Commitment (BC), with information theoretic security, on seemingly weaker primitives. We introduce a general model for describing such primitives, called Weak Generic Transfer (WGT). This model includes as important special cases Weak Oblivious Transfer (WOT), where both the sender and receiver may learn too much about the other ...
متن کاملSecure Two-Party Computation over a Z-Channel
In secure two-party computation, two mutually distrusting parties are interested in jointly computing a function, while preserving the privacy of their respective inputs. However, when communicating over a clear channel, security against computationally unbounded adversaries is impossible. Thus is the importance of noisy channels, over which we can build Oblivious Transfer (OT), a fundamental p...
متن کاملEfficient Oblivious Transfer Protocols Achieving a Non-zero Rate from Any Non-trivial Noisy Correlation
Oblivious transfer (OT) is a two-party primitive which is one of the cornerstones of modern cryptography. We focus on providing information-theoretic security for both parties, hence building OT assuming noisy resources (channels or correlations) available to them. This primitive is about transmitting two strings such that the receiver can obtain one (and only one) of them, while the sender rem...
متن کاملSecure Computation from Elastic Noisy Channels
Noisy channels enable unconditionally secure multi-party computation even against parties with unbounded computational power. But inaccurate noise estimation and adversarially determined channel characteristics render known protocols insecure. Such channels are known as unreliable noisy channels. A large body of work in the last three decades has attempted to construct secure multi-party comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004